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Abstract 

This paper examines the experimental setup and physics behind the Delayed Choice 

Quantum Eraser, with an emphasis on the significance of the phase-matching condition within 

the nonlinear BBO crystal used to create the entangled photons. The paper takes the reader step-

by-step through the experiment and the physics governing each element of it. A general 

undergraduate understanding of quantum mechanics is assumed. 
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Introduction 

Perhaps the most insightful proclamation ever made about quantum mechanics came 

from one of its most important contributors, Richard P. Feynman, who once declared, “Nobody 

understands quantum mechanics.” Despite being the most successful theory about the physical 

universe ever conceived by humankind, nobody can truthfully claim that it makes total sense to 

them, because it just doesn’t. Plus, the more we learn about quantum theory, and the more 

sophisticated our experiments become, the stranger it gets. 

Such is the case with the now famous delayed choice quantum eraser experiment, which 

was first described by Kim and others in 2000. [1] Since then, many have attempted to interpret 

and explain its results, including me and my late colleague E. Brian Treacy in 2005. [2] Some 

interpretations are more lucid than others [3] [4] [5], but in most cases the experiment seems to 

engender more confusion than clarity, especially in articles written for the general audience. 

Chief among these misinterpretations is the notion that the experiment proves that the present 

can affect the past—so-called “retrocausality.” Color me doubtful about this one. If the present 

could affect the past, there are a few things I’d like to undo. But I personally don’t think it’s 

possible. Who knows, though, maybe one day someone will prove me wrong about that, too. 

Nobody really understands quantum mechanics. Nevertheless, this paper offers yet another 

attempt to explain what might be going on in the delayed choice quantum eraser. 

Young’s double-slit with a pivotal quantum twist 

Figure 1 shows the basic setup of the original experiment. At the bottom of the figure, 

UV light (351.1-nm) from an argon-ion laser (blue arrows) irradiates a double-slit, just like in 

Young’s classic experiment. However, the similarity to Young’s experiment quickly vanishes 

next, because the wavefunction of each coherent UV photon that passes through the two slits is 

promptly used to pump two regions (1 and 2 in Figure 1) of a β-Barium Borate (BBO) crystal. 

Understanding what happens next within this nonlinear crystal is the key to understanding how 

the experiment works, because that’s where much of the quantum magic happens. 

https://www.semanticscholar.org/reader/a0b647f8140d72aa2c014ddec19e8b093d2b30f1
https://tvhiggins.com/wp-content/uploads/2024/12/Treacy-Higgins-Quantum-Eraser-Paper-June-25-copy.pdf
https://yrayezojeqrgexue.quora.com/The-delayed-choice-quantum-eraser-The-delayed-choice-quantum-eraser-is-one-of-the-most-hyped-experiments-in-popular-sci?ch=10&oid=50697428&share=092c6fc8&srid=QT6x&target_type=post
https://www.preposterousuniverse.com/blog/2019/09/21/the-notorious-delayed-choice-quantum-eraser/
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://philsci-archive.pitt.edu/15095/1/Taming%2520the%2520Delayed%2520Choice%2520Quantum%2520Eraser.pdf&ved=2ahUKEwjJh8STspqMAxVlEkQIHeoGBYcQFnoECBoQAQ&usg=AOvVaw1sMjZKrd0k4r0HF0Y13uqA
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Most of the pumping photons just pass 

right through the BBO crystal. Type-II 

spontaneous parametric down conversion, 

or SPDC for short, is a very inefficient 

process. But each pump photon of a lucky 

few (1 in 106) will be transformed within 

the crystal into two other photons having 

twice the wavelength (702.2 nm) and 

therefore half the frequency or energy.  

	 Now, there are a few important 

details to recognize about SPDC. First, 

down conversion is a non-local quantum 

process, meaning that both regions of the 

crystal participate in the creation of each 

photon pair from each pump photon. 

Consequently, you can’t know which 

region a down-converted photon pair came 

from: region 1, region 2, or both. In this 

regard, the quantum physics mimics the 

classic double-slit experiment. 

	 Second, unlike the double-slit 

experiment, the BBO crystal has a 

thickness within which SPDC takes place. Kim et al. used a 0.3-mm-thick crystal in their original 

experiment. This would ordinarily scramble the phases of wavefronts emerging from the crystal 

if it weren’t for another very important condition: phase matching. 

 In my opinion, the phase-matching condition is the most important SPDC property in 

this experiment next to entanglement, because the quantum eraser wouldn’t work without it, 

which I will get to soon. Even so, most explanations of this experiment that I’ve read fail to even 

mention the phase matching condition, oddly enough.  

Figure 1
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The phase-matching condition follows naturally from the conservation laws, whereby the 

sum of the energy (or the momentum) of the two down-converted photons (signal γ and idler φ in 

Figure 1) must equal the energy (or momentum) of the pump photon. Mathematically this is 

expressed as: 

kp = ks + ki                 (Eq. 1) 

ωp = ωs + ωi ,                 (Eq. 2) 

      

where kp, ks, and ki represent the wavevectors of the pump, signal, and idler photons, 

respectively, and ωp, ωs, and ωi represent their respective angular frequencies. The wavevectors 

kα (α = p, s, i) directly express the photons’ momenta through the de Broglie relation 

pα = hkα/2π, and ωα relates to the photons’ energies through Planck’s relation Eα = hωα/2π  

(h = Planck’s constant). The phase velocities (vα) of pump, signal, and idler also are linked by  

vα = ωα/kα, which lets us to rewrite Eq. 1 as ωp/vp = ωs/vs + ωi/vi. Therefore, phase velocities 

must match the pump, too. 

	 These factors and others—such as refractive indexes along the birefringent crystal axes, 

polarizations, and temperature—govern the phase matching condition. But the bottom line is that 

signal and idler must stay in phase with the pump laser’s coherent wavefront as they propagate 

through the crystal. There are basically two ways in which this can happen: either their phase 

sum equals the pump’s phase or their sum is π radians out of phase. With any other phase sum, 

the SPDC efficiency suffers greatly. These two complementary phase-matching conditions are 

called “symmetric” and “antisymmetric,” respectively. Phase-matching therefore couples the 

idler and signal phases to the pump’s coherent wavefront symmetrically and antisymmetrically. 

	 Finally, there are three other important Type-II SPDC attributes to mention: 1) the pump 

photon creates the signal/idler pair simultaneously, 2) signal and idler polarization states are 

mutually orthogonal, and 3) the signal/idler wavefunction is entangled. This entangled-pair state 

is quantum mechanically described in Dirac notation as: 1/√2 (|ΨγH>|ΨφV> + |ΨγV>|ΨφH>), where 

|ΨγH>|ΨφV> denotes a tensor product ΨγH ⊗ ΨφV, and subscripts γH, φV and γV, φH denote 

horizontally and vertically polarized signal/idler pairs from the BBO. Entanglement basically 

links two wavefunctions together as one across space and time. Therefore, what you do to one 
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immediately affects what you know about the other, no matter how far apart they may get. They 

are correlated throughout spacetime. Einstein, who was famously bothered by quantum 

entanglement, called it “spooky action at a distance.” And it is just that—spooky. 

The remaining experimental setup 

	 Let’s dissect what’s going on in the rest of the delayed choice quantum eraser setup. 

Signal photons (γ) emitted from the two BBO regions are directed off to the left in Figure 1, 

where they encounter a lens that focuses them onto the scanning detector D0. This detector looks 

for any interference fringes that might appear along the focal plane where the two beams 

intersect. 

	 Idler photons (φ) exit the BBO to a separate area of the setup in Figure 1, where they 

encounter a prism, three beamsplitters (BSA, BSB, BS), two mirrors, and four detectors (D1, D2, 

D3, D4). Optical path lengths from the BBO to these four detectors Dφ (φ=1-4) are all made 

equal, but they also are intentionally made longer than the optical path length from the BBO to 

D0. Τhis creates a time delay between the detections of each idler photon and its entangled 

signal-photon twin. In the original experiment, this delay amounts to “at least 8 ns.” 

	 Each of the Dφ detectors is also electronically linked with D0 for coincidence detection 

(see Figure 1 again). Since each signal/idler pair is created simultaneously, coincidence 

detections will generate a ledger containing four subsets of synchronized event data. Each 

detection event at D0 will therefore have a corresponding detection of its entangled twin 8 ns 

later at one of the Dφ detectors. 

The experiment in action 

	 Let’s now look	 at what happens when we fire up the laser and start taking data. The first 

thing to notice on the signal-photon side is that we don’t see any interference fringes at D0 (see 

Figure 2b). Those who know how the double-slit experiment works would expect to see fringes 

(see Figure 2a), so this may come as a surprise. Let’s examine what might be happening here. 

	 One quantum mechanical explanation for the absence of an interference pattern at D0 is 

that the wavefunction of each signal-photon at D0 is in a superposition of four complementary 
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SPDC states: region 1 acting alone, region 2 acting alone, regions 1 and 2 acting together in-

phase (symmetric), and regions 1 and 2 acting together antiphase (antisymmetric). 

	 Another quantum mechanical explanation is that entanglement destroys interference. The 

reason given for this interpretation is that the entangled photons act as tags to one another. This 

creates the potential to determine which-path information, and even the potential for having such 

information destroys interference. 

	 If entanglement destroys interference, the idler side of the experiment is designed to 

recover the four SPDC quantum states virtually by using the coincidence-detection data. Here’s 

how that works (refer to Figure 1, again). Idler photons emitted from the BBO first encounter the 

50/50 beamsplitters BSA and BSB, where there’s a 50/50 chance φ2 will get diverted to D3 and a 

50/50 chance φ1 will go to D4. The purpose here is to glean which-path information.  

	 Idler photons that don’t get deflected to D3 or D4 proceed via the two mirrors to 

beamsplitter BS. The motive of BS is to “erase” which-path information by making it impossible 

to know which BBO region the idler photon came from. This part of the experiment is called—

you guessed it—the “quantum eraser.”  

	 The joint wavefunction due to the quantum eraser can be modeled mathematically as, 

Ψ = 1/√2 [ΨD1 ⊗ (-Ψγ1 - Ψγ2)] + 1/√2 [ΨD2 ⊗ (Ψγ1 - Ψγ2)],          Εq. 3    [5] 

Figure 2 (from [3])

https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://philsci-archive.pitt.edu/15095/1/Taming%2520the%2520Delayed%2520Choice%2520Quantum%2520Eraser.pdf&ved=2ahUKEwjJh8STspqMAxVlEkQIHeoGBYcQFnoECBoQAQ&usg=AOvVaw1sMjZKrd0k4r0HF0Y13uqA
https://yrayezojeqrgexue.quora.com/The-delayed-choice-quantum-eraser-The-delayed-choice-quantum-eraser-is-one-of-the-most-hyped-experiments-in-popular-sci?ch=10&oid=50697428&share=092c6fc8&srid=QT6x&target_type=post
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which links idler (φ) detections at D1/D2 to the signal’s (γ) phase states, and where the +/- signs 

within the brackets account for the π-radian phase shifts encountered by the idler wavefunction at 

both the mirrors and the beamsplitter BS. The phase shift at the mirrors is always π radians. The 

phase shift at beamsplitter BS, however, depends crucially on which direction the wavefunction 

is coming from and whether it is reflected or transmitted at BS. If, for example, we consider idler 

φ2, there is a 50% probability that it will either be reflected to D2 or transmitted to D1 (see Figure 

3). If it gets reflected from BS to D2, then it experiences a π-radian phase shift. But, if it’s 

transmitted to D1, it undergoes no phase shift. On the other hand, if we’re talking about φ1, an 

internal reflection that occurs within the glass substrate of BS, which redirects it to D1, 

experiences no phase shift, and neither does a transmission of φ1 through BS to D2. 

	 Beamsplitter BS therefore has a very useful sorting capacity. Idler wavefunctions in a 

superposition of symmetric/antisymmetric phase states are sorted by BS into two separate sets. 

D2 clicks for antisymmetric states, and D1 clicks for symmetric ones. This comes about from the 

Figure 3
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asymmetric, collinear overlap (interference) of the symmetric and antisymmetric phase states at 

the Mach-Zehnder-style interferometer that defines the quantum eraser. For symmetric phases, 

the idler photon’s wavefunction interferes constructively with itself in the direction of D1 and 

destructively toward D2. For antisymmetric phases, the wavefunction interferes destructively in 

the direction of D1 and constructively toward D2. Consequently, the path from BS to D2 is dark 

for symmetric states while the path from BS to D1 is dark for antisymmetric ones (see Figure 3). 

	 Figure 4 models the collinear interference of the symmetric/antisymmetric idler 

wavefunctions that exit the BBO, as seen at detector D1. The red plots simulate intensity and 

phase conditions of the detected photons emitted by the two BBO regions using the equation: 

 I = [cos(θ1 + nπ) + cos(θ2 + mπ)]2 ,           Eq. 4  

where n=0-10 and m=0-10. The ordinate of the graph represents intensity, the abscissa tracks the 

phase, and θ is the initial phase of each region, which is made equal to the coherent pump laser 

through phase matching. For symmetric phases, m and n are either both even or both odd 

integers, which symbolize whole-wavelength phase shifts between BBO regions 1 and 2. For 

antisymmetric phases, either m is even and n is odd or m is odd and n is even, which symbolize 

half-wavelength phase shifts between the two BBO regions. (I used ten integers of the multiples 

m and n as a way to help visualize several phase-matched waves over a distance of five 

wavelengths, which is about 3.5 microns or >1% of the BBO thickness.) 

Figure 4



 9

	 Note in Figure 4 that symmetric phases interfere constructively with high intensity while 

destructive antisymmetric interference yields zero intensity at D1. However, the opposite is true 

at D2, where the antisymmetric phase interferes constructively. But this happens only because of 

the asymmetric phase shift at BS, which converts an antisymmetric phase from the BBO into a 

symmetric one, which then interferes constructively at D2. 

	  

Analysis, questions, and discussion 

	 Now we can paint a fuller picture of how the delayed choice quantum eraser works.   

D0-D1 coincidence detections flag the symmetric state, D0-D2 coincidences flag the 

antisymmetric state, and D0-D3 or D0-D4 coincidences yield which-path information. So, the 

delayed choice quantum eraser is actually a sorting machine. It uses coincidence detections that 

exploit the tagging feature of entanglement, along with the sorting feature of the quantum eraser, 

in order to parse the symmetry and which-path information of the signal photons. 

  

	 What looks like a complete lack of interference at D0 in Figure 5a actually hides a 

superposition of four complementary signal-photon states: Ψγ1, Ψγ2, (Ψγ1 + Ψγ2), and 

(Ψγ1 - Ψγ2). Figure 5b and 5c visualize the photon distributions of each state separately. Note 

that when you add together the two states of Figure 5b or 5c, you get the distribution shown in 

Figure 5a. The complementary superposition shown in Figure 5c is also depicted by the curves 

Figure 5 (from [3])

https://yrayezojeqrgexue.quora.com/The-delayed-choice-quantum-eraser-The-delayed-choice-quantum-eraser-is-one-of-the-most-hyped-experiments-in-popular-sci?ch=10&oid=50697428&share=092c6fc8&srid=QT6x&target_type=post
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drawn in Figure 3. Those curves show how the D0-D1 and D0-D2 interference distributions of 

sinc2cos2 and sinc2sin2 (black) add up to a sinc2 distribution (red), as observed in the original 

experiment.  

	 So, in some sense, both reasons given earlier for the lack of interference patterns at D0 

seem justified. But in order to “see” the complementary interference patterns of Figure 5c, for 

example, we need to plot out the coincidence data collected by D0-D1 and D0-D2. Eq. 3 describes 

the joint wavefunction at work here. When D1 clicks, the wavefunction of Eq. 3 collapses to 

 (-Ψγ1 - Ψγ2). Ignoring normalization factors, we can calculate the modulus squared as 

 (-Ψγ1 - Ψγ2)(-Ψγ1 - Ψγ2)*, where (-Ψγ1 - Ψγ2)* defines the complex conjugate. The result is, 

|Ψ|2 = | Ψγ1 |2 + | Ψγ2 |2 + 2| Ψγ2 || Ψγ1 |.          Eq. 5 

Substituting ordinary plane waves A1eiφ1 for Ψγ1 and A2eiφ2 for Ψγ2 above, where A1, A2 are the 

wave amplitudes and φ1, φ2 are their phases, we get (-A1eiφ1  - A2eiφ2)(-A1e-iφ1 - A2e-iφ2), yielding 

the intensity distribution of, 

I = A12 + A22 + 2A1A2cos(φ2 - φ1),         Eq. 6 

which describes the classic interference pattern of a double slit irradiated by a plane wave.  

	 For the antisymmetric wavefunction, Eq. 3 collapses to (Ψγ1 - Ψγ2) each time D2 clicks. 

Using the same plane-wave substitutions as above, the intensity distribution looks like, 

I = A12 + A22 - 2A1A2cos(φ2 - φ1).         Eq. 7  

Eq. 7 describes a double-slit pattern complementary to the one portrayed in Eq. 6. Together, Eqs. 

6 and 7 mimic the patterns we see in Figure 5c. Both of these equations are didactic 

representations, though. Again, the interference patterns in the original experiment are a little 

different because of the diffraction from finite slit-widths, etc., as we saw earlier in Fig. 3 with 

the sinc2cos2 and sinc2sin2 plots. Nevertheless, the fundamental physics is the same. 
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	 To “see” the complementary patterns of Figure 5b, we need to plot out the coincidence 

data of D0-D3 and D0-D4. Entangled superpositions of the orthogonally polarized photon pairs 

created in both regions of the BBO can be generally described in Dirac notation as, 

|Ψ> = 1/√2 [(|Ψγ1H>|Ψφ1V> + |Ψγ1V>|Ψφ1H>) + (|Ψγ2H>|Ψφ2V> + |Ψγ2V>|Ψφ2H>)],         Eq. 8 

where the H and V subscripts symbolize horizontal and vertical polarization states, respectively. 

Eq. 8 includes both variants of the polarization states that can exist for multiple pairs of photons 

created in both BBO regions. For a single photon pair, the equation can reduce to just, 

|Ψ> = 1/√2 (|Ψγ1H>|Ψφ1V> + |Ψγ2H>|Ψφ2V>).         Eq. 9 

Since the signal and idler wavefunctions are orthogonal, the modulus squared of Eq. 9 becomes 

|Ψ|2 = 1/2 (|Ψγ1H|2 |Ψφ1V|2 + |Ψγ2H|2 |Ψφ2V|2),         Eq. 10   [5] 

and the interference term that we saw in Eq. 5 vanishes. Thus, the entangled state of Eq. 9 

collapses to 1/√2 |Ψγ1H>|Ψφ1V> if D4 clicks, yielding a modulus squared of 1/2 |Ψγ1H|2 |Ψφ1V|2. If 

D3 clicks, it collapses to 1/√2 |Ψγ2H>|Ψφ2V> with a modulus squared of 1/2 |Ψγ2H|2 |Ψφ2V|2. Since 

D0 is scanning only the signal-photon’s (γ) spatial distribution, D0-D4 data therefore uncovers the 

clump pattern of |Ψγ1H|2, and D0-D3 data reveals the clump pattern of |Ψγ2H|2 (Figure 5b).  

	 Notably, it doesn’t matter whether D0 clicks first or Dφ does. From the perspective of 

wavefunction collapse, it’s just as valid to interpret a signal-photon detection collapsing the idler 

wavefunction as it is the other way around. The correlations between entangled states exist 

across spacetime. A measurement made on one entangled quantum, and its resulting 

wavefunction collapse, does not determine the state of the other; rather, it reveals a correlation 

between the two that’s independent of time and space, for as long as they remain entangled. 

What matters is which correlation you choose to reveal, not when you choose to do it. So much 

for spooky “retrocausality.” 

https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://philsci-archive.pitt.edu/15095/1/Taming%2520the%2520Delayed%2520Choice%2520Quantum%2520Eraser.pdf&ved=2ahUKEwjJh8STspqMAxVlEkQIHeoGBYcQFnoECBoQAQ&usg=AOvVaw1sMjZKrd0k4r0HF0Y13uqA
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	 It is also widely argued that entanglement kills or reduces interference, which is called 

decoherence. Here’s just one example: “As soon as the signal photon gets entangled [with the 

idler], the photon states lose their coherence.” [5] Yet, in this experiment, interference is still 

alive and well among entangled idler photons at the quantum eraser. Some level of coherence 

must exist for it to function, despite entanglement. It is the coherent phase-matching condition 

within the BBO that makes possible the collinear sorting done by the interferometer at the eraser. 

You can’t have a working interferometer without coherent interference. It’s literally in the name. 

Therefore, if coherent idler photons can interfere, so should coherent signal photons. Both are 

phase-matched by the same BBO, as described earlier. 

	 One very pertinent question to ask, then, would be this: Can the superposed, 

complementary signal-photon states somehow be physically (optically) separated, too? The 

experiment separates these states virtually using coincidence detection and the quantum property 

of entanglement, but if there also were a way to optically separate at least the symmetric/

antisymmetric states—as is done with idler wavefunctions at the quantum eraser—would we 

actually see the fringes of Figure 5c? I personally don’t see how to do this, but if it’s only 

possible to disentangle entangled states virtually, what does this tell us about non-locality, 

spacetime, entanglement, and wavefunctions in general? Wavefunction entanglement does seem 

to transcend the dimensions of time and space. That’s what makes this experiment, and others 

like it, so fascinating to me. Feynman would be smiling.

https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://philsci-archive.pitt.edu/15095/1/Taming%2520the%2520Delayed%2520Choice%2520Quantum%2520Eraser.pdf&ved=2ahUKEwjJh8STspqMAxVlEkQIHeoGBYcQFnoECBoQAQ&usg=AOvVaw1sMjZKrd0k4r0HF0Y13uqA

