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Abstract 

This paper examines the experimental setup and physics behind the delayed-choice 

quantum eraser and offers the simplifying metaphor of a game of chance played with entangled 

dice. The paper takes the reader step-by-step through the experiment and the physics governing 

each element of it. A general undergraduate familiarity with quantum mechanics is assumed. 
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Introduction 

Perhaps the most insightful declaration ever made about quantum mechanics came from 

one of its most important contributors, Richard P. Feynman, who once proclaimed, “Nobody 

understands quantum mechanics.” Despite being the most successful theory about the physical 

universe ever conceived by humankind, nobody can truthfully claim that it makes total sense to 

them, because it just doesn’t. Plus, the more we learn about quantum theory, and the more 

sophisticated our experiments become, the stranger it gets. 

Such is the case with the now famous delayed-choice quantum eraser experiment, which 

was first described by Kim and others in 2000. [1] Since then, many have attempted to interpret 

and explain its results. Some interpretations are more lucid than others [2] [3] [4], but in many 

cases the experiment seems to engender more confusion than clarity, especially in articles written 

for the general audience. Chief among these misinterpretations is the notion that the experiment 

proves that the present can affect the past—so-called “retrocausality.” Color me doubtful about 

this one. If the present could affect the past, there are a few things I’d like to undo. But I 

personally don’t think it’s possible. Who knows, though, maybe one day someone will prove me 

wrong about that, too. Nobody really understands quantum mechanics. Nonetheless, this paper 

offers yet another attempt to explain what might be going on in the delayed-choice quantum 

eraser. 

Young’s double-slit experiment with a pivotal quantum twist 

Figure 1 shows the basic setup of the original experiment. At the bottom of the figure, 

UV light (351.1-nm) from an argon-ion laser (blue arrows) irradiates a double slit, just like in 

Young’s classic experiment. However, the similarity to Young’s experiment quickly vanishes 

next, because the wavefunction of each coherent UV photon that passes through the two slits is 

used to pump two regions (1 and 2 in Figure 1) of a β-Barium Borate (BBO) crystal. 

Understanding what happens next within this nonlinear crystal is a key to understanding how the 

experiment works, because that’s where much of the quantum magic happens. 

https://www.semanticscholar.org/reader/a0b647f8140d72aa2c014ddec19e8b093d2b30f1
https://yrayezojeqrgexue.quora.com/The-delayed-choice-quantum-eraser-The-delayed-choice-quantum-eraser-is-one-of-the-most-hyped-experiments-in-popular-sci?ch=10&oid=50697428&share=092c6fc8&srid=QT6x&target_type=post
https://www.preposterousuniverse.com/blog/2019/09/21/the-notorious-delayed-choice-quantum-eraser/
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://philsci-archive.pitt.edu/15095/1/Taming%20the%20Delayed%20Choice%20Quantum%20Eraser.pdf&ved=2ahUKEwjJh8STspqMAxVlEkQIHeoGBYcQFnoECBoQAQ&usg=AOvVaw1sMjZKrd0k4r0HF0Y13uqA
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	 Most of the pumping photons just 

pass right through the BBO crystal. Type-

II spontaneous parametric down 

conversion, or SPDC for short, is a very 

inefficient process. But each pump photon 

of a lucky few (1 in 106) will be 

transformed within the crystal into two 

new photons having twice the wavelength 

(702.2 nm) and therefore half the 

frequency or energy.  

	 Now, there are a few important 

details to recognize about SPDC. First, 

down conversion is a non-local quantum 

process, meaning that both regions of the 

crystal participate in the creation of each 

photon pair from each pump photon. 

Consequently, you can’t know which 

region a down-converted photon pair came 

from: region 1, region 2, or both. In this 

regard, the quantum physics mimics the 

classic double-slit experiment. 

	 Second, unlike the double-slit 

experiment, the BBO crystal has a thickness within which SPDC takes place. Kim et al. used a 

0.3-mm-thick crystal in their original experiment. This would ordinarily scramble the phases of 

wavefronts emerging from the crystal if it weren’t for another very important condition: phase 

matching. 

 In my opinion, the phase-matching condition is the most important SPDC property in 

this experiment next to entanglement. Even so, most explanations of the delayed-choice quantum 

eraser that I’ve read fail to even mention it. 

Figure 1
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The phase-matching condition follows naturally from the conservation laws, whereby the 

sum of the energy (or the momentum) of the two down-converted photons (signal γ and idler φ in 

Figure 1) must equal the energy (or momentum) of the pump photon. Mathematically this is 

expressed as: 

kp = ks + ki                 Eq. 1 

ωp = ωs + ωi ,                 Eq. 2 

      

where kp, ks, and ki represent the wavevectors of the pump, signal, and idler photons, 

respectively, and ωp, ωs, and ωi represent their respective angular frequencies. The wavevectors 

kα (α = p, s, i) directly express the photons’ momenta through the de Broglie relation 

pα = hkα/2π, and ωα relates to the photons’ energies through Planck’s relation Eα = hωα/2π  

(h = Planck’s constant). The phase velocities (vα) of pump, signal, and idler also are linked by  

vα = ωα/kα, which lets us to rewrite Eq. 1 as ωp/vp = ωs/vs + ωi/vi. Therefore, phase velocities 

must match the pump, too. 

	 These factors and others—such as refractive indexes along the birefringent crystal axes, 

polarizations, and temperature—govern the phase matching condition. But the bottom line is that 

signal and idler must stay in-phase with the pump laser’s coherent wavefront as they propagate 

through the crystal. If their phase sum is not equal to the pump, the SPDC efficiency suffers 

greatly. 

	 Last but not least, there are three other significant attributes of Type-II SPDC to mention: 

1) the pump photon creates the signal/idler pair simultaneously, 2) signal and idler polarization 

states are mutually orthogonal, and 3) the signal/idler wavefunction is entangled. This entangled-

pair state is described in Dirac notation as: 1/√2 (|ΨγH>|ΨφV> + |ΨγV>|ΨφH>), where |ΨγH>|ΨφV> 

denotes the tensor product ΨγH ⊗ ΨφV, and subscripts γH, φV and γV, φH denote horizontally and 

vertically polarized signal/idler pairs from the BBO. Entanglement basically links two 

wavefunctions together as one across space and time. Therefore, what you do to one immediately 

affects the other, no matter how far apart they may get. They are correlated throughout 

spacetime. Einstein, who was famously bothered by quantum entanglement, called it “spooky 

action at a distance.” And it is just that—spooky. 
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The remaining experimental setup 

	 Let’s dissect what’s going on in the rest of the delayed-choice-quantum-eraser setup. 

Signal photons (γ) emitted from the two BBO regions are directed off to the left in Figure 1, 

where they encounter a lens that focuses them onto the scanning detector D0. This detector 

measures the total detection rates of signal photons along the focal plane where the two paths (γ1 

and γ2) intersect. 

	 Idler photons (φ) exit the BBO to a separate area of the setup in Figure 1, where they 

encounter a prism, three beamsplitters (BSA, BSB, BS), two mirrors, and four detectors (D1, D2, 

D3, D4). Optical path lengths from the BBO to these four detectors Dφ (φ = 1-4) are all made 

equal, but they also are intentionally made longer than the optical path length from the BBO to 

D0. Τhis creates a time delay between the detections of each idler photon and its entangled 

signal-photon twin. In the original experiment, this delay amounts to “at least 8 ns.” 

	 Each of the Dφ detectors is also electronically linked with D0 for coincidence detection 

(see Figure 1 again). Since each signal/idler pair is created simultaneously, coincidence 

detections will generate a ledger containing four subsets of synchronized event data. Each 

detection event at D0 will therefore have a corresponding detection of its entangled twin 8 ns 

later at one of the Dφ detectors. 

The experiment in action 

	 Let’s now look	 at what happens when we fire up the laser and start taking data. The first 

thing to notice on the signal-photon side is that we don’t see any interference fringes at D0 (see 

Figure 2b). Those who are familiar with the double-slit experiment would expect to see fringes 

(see Figure 2a), so this may come as a surprise. Let’s examine what might be happening here. 

	 The popular explanation for the absence of an interference pattern at D0 is that 

entanglement destroys interference. The rationale usually given for this interpretation is that the 

entangled photons act as tags to one another. This creates the potential to determine which-path 

information, and even the potential for having such information destroys interference. 
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	 Another viewpoint is that coherence is not so much destroyed by entanglement as it is 

rendered inaccessible to local measurement; therefore, pure coherent states still can be presumed 

to exist locally at D0, but as an indistinguishable ensemble of mixed states. In this experiment, 

the states are: region 1 acting alone, region 2 acting alone, regions 1 & 2 acting together in-phase 

(symmetric), and regions 1 & 2 acting together antiphase (antisymmetric).  

	 In either case, the idler side of the experiment is designed to reconstruct these four pure 

states from the coincidence-detection data. Here’s how that works (refer to Figure 1). Each idler 

photon emitted from the BBO first encounters the 50/50 beamsplitters BSA and BSB, where 

there’s a 50/50 chance φ2 will get diverted to D3 and a 50/50 chance φ1 will go to D4. The 

purpose here is to glean which-path information about the entangled wavefunction. 

	 Idler wavefunctions that don’t get deflected to either D3 or D4 proceed via two mirrors to 

the 50/50 beamsplitter BS. The motive of BS is to “erase” which-path information by making it 

impossible to know which BBO region an entangled idler wavefunction came from. This part of 

the idler section is called the “quantum eraser” (see Figure 3).  

	 Each idler wavefunction reflected from the two mirrors of the quantum-eraser undergoes 

a symmetrical phase shift of π-radians, but beamsplitter BS imparts a critical asymmetric phase 

shift. After this beamsplitter, each idler wavefunction arriving at D1 experiences no phase shift 

between paths φ1 and φ2, while the wavefunction detected at D2 undergoes a π-radian phase shift 

between paths φ1 and φ2. 

Figure 2 (from [2])

https://yrayezojeqrgexue.quora.com/The-delayed-choice-quantum-eraser-The-delayed-choice-quantum-eraser-is-one-of-the-most-hyped-experiments-in-popular-sci?ch=10&oid=50697428&share=092c6fc8&srid=QT6x&target_type=post
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	 Beamsplitter BS therefore has a very useful sorting capacity. Entangled idler 

wavefunctions are sorted into a symmetric phase superposition at D1 (see Figure 3a) and an 

antisymmetric phase superposition at D2 (see Figure 3b). The joint signal-idler detection after the 

quantum eraser therefore can be modeled mathematically as: 

Ψ = 1/√2 [ΨD1 ⊗ (-Ψγ1 - Ψγ2)] + 1/√2 [ΨD2 ⊗ (Ψγ1 - Ψγ2)],          Εq. 3    [4] 

which links the idler (φ) detections at D1 and D2 to the correlated signal (γ) detections at D0, and 

where the ± signs within the parentheses convey the idler’s asymmetric phases at the quantum 

eraser (±Ψφ1 - Ψφ2) onto its entangled signal wavefunction (±Ψγ1 - Ψγ2) at D0. 

Figure 3

https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://philsci-archive.pitt.edu/15095/1/Taming%20the%20Delayed%20Choice%20Quantum%20Eraser.pdf&ved=2ahUKEwjJh8STspqMAxVlEkQIHeoGBYcQFnoECBoQAQ&usg=AOvVaw1sMjZKrd0k4r0HF0Y13uqA
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Analysis and discussion 

	 Now we can paint a fuller picture of how the delayed-choice quantum eraser works.   

D0-D1 coincidence detections flag the symmetric state, D0-D2 coincidences flag the 

antisymmetric state, and D0-D3 or D0-D4 coincidences yield which-path information. So, the 

delayed-choice quantum eraser acts like a sorting machine. It exploits the tagging feature of 

entanglement, along with the sorting feature of the quantum eraser, and then combines that 

information through coincidence detections into accessible coherent wavefunctions. 

	 What appears as an incoherent clump pattern at D0 in Figure 4a is reconstituted by joint 

signal-idler detections into the coherent pure states of Figures 4b and 4c. Note that when you add 

together the two states of Figure 4b or 4c, you get the clump distribution locally observed at D0 

(Figure 4a). The complementary symmetric-antisymmetric states shown in Figure 4c are also 

depicted by the curves drawn in Figures 3a and 3b, respectively. Those curves show how the 

complementary interference distributions of sinc2cos2 and sinc2sin2 (black) add up to a sinc2 

clump distribution (red), as observed at D0 in the original experiment. 

	 So, in some sense, both reasons given earlier for the lack of interference patterns at D0 

seem reasonable. But in order to “see” the complementary interference patterns of Figure 4c, for 

example, we must plot out the coincidence data collected by D0-D1 and D0-D2.  

Figure 4 (from [2])

https://yrayezojeqrgexue.quora.com/The-delayed-choice-quantum-eraser-The-delayed-choice-quantum-eraser-is-one-of-the-most-hyped-experiments-in-popular-sci?ch=10&oid=50697428&share=092c6fc8&srid=QT6x&target_type=post
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	 Eq. 3 describes the joint wavefunction at work here. When D1 clicks, the joint 

wavefunction of Eq. 3 collapses to (-Ψγ1 - Ψγ2). Ignoring normalization factors, we can calculate 

the modulus squared as (-Ψγ1 - Ψγ2)(-Ψγ1 - Ψγ2)*, where (-Ψγ1 - Ψγ2)* defines the complex 

conjugate. The result is: 

|Ψ|2 = |Ψγ1|2 + |Ψγ2|2 + 2|Ψγ2||Ψγ1|.          Eq. 4 

Substituting ordinary plane waves A1eiφ1 for Ψγ1 and A2eiφ2 for Ψγ2 above, where A1, A2 are the 

wave amplitudes and φ1, φ2 are their phases, we get (-A1eiφ1  - A2eiφ2)(-A1e-iφ1 - A2e-iφ2), yielding 

the intensity distribution of 

I = A12 + A22 + 2A1A2cos(φ2 - φ1),         Eq. 5 

which describes the classic interference pattern of a double slit irradiated by a plane wave.  

	 For the antisymmetric wavefunction, Eq. 3 collapses to (Ψγ1 - Ψγ2) each time D2 clicks. 

Using the same plane-wave substitutions as above, the intensity distribution looks like, 

I = A12 + A22 - 2A1A2cos(φ2 - φ1).         Eq. 6  

Eq. 6 describes a double-slit pattern complementary to the one portrayed in Eq. 5. Together, Eqs. 

5 and 6 mimic the patterns we see in Figure 4c. Both of these equations are didactic 

representations, though. Again, the actual interference patterns in the original experiment are 

different because of the diffraction from finite slit-widths, etc., as we saw earlier in Fig. 3 with 

the sinc2cos2 and sinc2sin2 plots. Nevertheless, the fundamental physics is the same. 

	 To “see” the complementary patterns of Figure 4b, we need to plot out the coincidence 

data of D0-D3 and D0-D4. Entangled superpositions of the orthogonally polarized photon pairs 

created in both regions of the BBO can be generally described in Dirac notation as 

|Ψ> = 1/√2 [(|Ψγ1H>|Ψφ1V> + |Ψγ1V>|Ψφ1H>) + (|Ψγ2H>|Ψφ2V> + |Ψγ2V>|Ψφ2H>)],         Eq. 7 
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where the H and V subscripts symbolize horizontal and vertical polarization states, respectively. 

Eq. 7 includes both variants of the polarization states that can exist for multiple pairs of photons 

created in both BBO regions. For a single photon pair, this equation reduces to either 

|Ψ> = 1/√2 (|Ψγ1H>|Ψφ1V> + |Ψγ2H>|Ψφ2V>) or        Eq. 8 

 |Ψ> = 1/√2 (|Ψγ1V>|Ψφ1H> + |Ψγ2V>|Ψφ2H>),          Eq. 9 

for the alternative orthogonal polarizations. Since the wavefunctions are orthogonal, the modulus 

squared of Eq. 8 becomes 

|Ψ|2 = 1/2 (|Ψγ1H|2 |Ψφ1V|2 + |Ψγ2H|2 |Ψφ2V|2),         Eq. 10    [4] 

and the interference term that we saw in Eq. 4 vanishes. Thus, the entangled state of Eq. 8 

collapses to 1/√2 |Ψγ1H>|Ψφ1V> if D4 clicks, yielding a modulus squared of 1/2 |Ψγ1H|2 |Ψφ1V|2. If 

D3 clicks, it collapses to 1/√2 |Ψγ2H>|Ψφ2V> with a modulus squared of 1/2 |Ψγ2H|2 |Ψφ2V|2. Since 

D0 is scanning only the signal-photon’s (γ) spatial distribution, D0-D4 data therefore uncovers the 

clump pattern of |Ψγ1H|2, and D0-D3 data reveals the clump pattern of |Ψγ2H|2 (see Figure 4b).  

Eq. 9 will collapse in a similar way for the alternative polarization states. 

	 Notably, it doesn’t matter whether D0 clicks first or Dφ does. From the perspective of 

wavefunction collapse, it’s just as valid to interpret a signal-photon detection collapsing the idler 

wavefunction as it is the other way around. The correlations between entangled states exist 

across spacetime. A measurement made on one quantum of an entangled pair, and the resulting 

simultaneous wavefunction collapse, reveals a correlation between the two quanta that is 

somehow independent of time and space. 

	 Perhaps it is easier to imagine the delayed-choice quantum eraser as a game of chance 

played with a pair of entangled dice. Each roll of the signal die yields a random detection result, 

and each roll of the idler die yields another random detection result. Coincidence detections 

combine these two random results into a final correlated outcome. Both dice are rolled 

https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://philsci-archive.pitt.edu/15095/1/Taming%20the%20Delayed%20Choice%20Quantum%20Eraser.pdf&ved=2ahUKEwjJh8STspqMAxVlEkQIHeoGBYcQFnoECBoQAQ&usg=AOvVaw1sMjZKrd0k4r0HF0Y13uqA
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simultaneously, but just like in a normal game of dice, it doesn’t matter which die comes to rest 

first or even where it comes to rest. Their combined outcome is independent of the order in 

which each die reveals its result. So much for “retrocausality.” However, unlike with a normal 

game of dice, if one die happens to roll out of sight, you can nevertheless infer its result by just 

observing the other visible die, because the two dice are entangled. 

	 The real mystery here lies with the seemingly instantaneous connection between 

physically separate entangled quanta, which is why Einstein called it “spooky action at a 

distance.” Quantum entanglement is what makes the results of this experiment, and others like it, 

so baffling. Feynman would be smiling. 


