Rolling the Dice on the Delayed-Choice Quantum Eraser
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Abstract

This paper offers an alternative interpretation of the delayed-choice quantum eraser using
the analogy of tossing two quantumly entangled dice. This interpretation duplicates the
symmetric and antisymmetric data plots of the original paper by Kim et al. and provides a deeper
insight into the statistical nature of the experiment. In particular, it proposes a stochastic
explanation for why the original coincidence-detection plots do not go to zero where theory

predicts they should be zero. In so doing, it also presents a simple metaphor of the experiment as

a collection of random dice throws.
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Introduction

It was Albert Einstein himself who famously signaled his skepticism of quantum
mechanics with the quote “God does not play dice with the world.” With this one declaration he
tossed aside the uncomfortable indeterminacy of the quantum world for the more familiar
determinism of classical physics. Einstein never did make peace with quantum mechanics, and
he repeated his dice metaphor throughout his life. But the quantum description of physical reality
prevailed, and it now forms our most complete and accurate understanding of the universe.

To be clear, quantum mechanics is not for the faint-of-heart. It’s a theory that flies in the
face of our classical intuitions. But there are two experiments in particular that convincingly
demonstrate two of the most bizarre yet fundamental effects of quantum behavior: superposition
and entanglement. The two experiments are Young’s renowned double-slit experiment
(superposition) and the now famous delayed-choice quantum eraser (superposition and
entanglement), which is a 21st-Century update of Young’s experiment.

This paper examines the delayed-choice quantum eraser experiment of Kim et al. by
equating it with the random throws of two dice. The metaphor not only seems to explain the data
plots of the experiment, but this interpretation also offers a deeper understanding of its random,

stochastic nature.

The experimental setup of Kim et al.

I already have given a fuller description of the physics behind the delayed-choice
quantum eraser, which I published in March 2025 on my website. [1] Figure 1 of that paper (and
this one) shows the basic experimental setup (see Figure 1).

At the bottom of Figure 1, UV light (351.1-nm) from an argon-ion laser (blue arrows)
irradiates a double-slit, just like in Young’s classic experiment. However, the similarity to
Young’s experiment quickly disappears next, because the wavefunction of each coherent UV
photon that passes through the two slits is promptly used to pump two regions of a f-Barium

Borate (BBO) crystal (labeled 1 and 2 in the figure).
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A tiny minority of pump photons (1
in 10°) are transformed within the crystal
into two entangled photons (signal y and
idler @), each having twice the wavelength
(702.2 nm) and therefore half the
frequency or energy.

Signal photons (y) emitted from the two
BBO regions are directed off to the left in
Figure 1 where they encounter a lens that
focuses them onto the scanning detector
Do. This detector looks for any intensity
variations that might appear along the
focal plane where the two beams intersect.

Idler photons () exit the BBO to a
separate area of the setup in Figure 1,
where they encounter a prism, three
beamsplitters (BSA, BSB, BS), two
mirrors, and four detectors (D1, D2, D3,
D). Optical path lengths from the BBO to
these four detectors Dj (j = 1-4) are all
made equal, but they also are intentionally

made longer than the optical path length

from the BBO to Do. This creates a time delay between the detections of each idler photon and its

entangled signal-photon twin. In the original experiment, this delay amounts to “at least 8 ns.”

Each of the Dj detectors is also electronically linked with Do for coincidence detection

(see Figure 1 again). Since each signal-idler pair is created simultaneously, coincidence

detections will generate a ledger containing four subsets of synchronized event data. Each

detection event at Do will therefore have a corresponding detection of its entangled twin 8 ns

later at one of the four D; detectors.



The quantum-dice matrix

Here’s how we might describe this experiment as the dice rolls of two four-sided dice:
Each signal photon (y) randomly encountered by the scanning detector Do potentially belongs to
one of four states in a statistical ensemble of mixed quantum states. The four states are: BBO
regions 1 and 2 acting together symmetrically (‘V1); BBO regions 1 and 2 acting together
antisymmetrically (¥2); BBO region 2 acting alone (¥'3); and BBO region 1 acting alone (‘V4).
But, only the joint detections of signal detector Dy and idler detector Dj (j = 1-4) can decide
which state the photon belongs to (V1, ¥2, ¥3, or ¥4). Meanwhile, each entangled idler twin ()
is randomly intercepted by either D1, D2, D3, or D4. (There are important exceptions to this
random detector distribution that will be introduced soon.)

The random detections at Do might therefore be modeled as the random outcomes of a
four-sided die. The random detections 8 ns later of each entangled idler twin at D;j could be
thought of as the arbitrary outcomes of another four-sided die. Coincidence detections record the
combinations of these correlated detections of the signal-idler pairs.

As such, the delayed-choice quantum eraser seems like a possible candidate for applying
the statistical mathematics of tossing two four-sided dice. We start by building a matrix of all

possible combinations of coincidence detections, which would look like this:

(P, D, ¥,D, ¥,D, ¥,D))
¥.D, ¥,D, ¥,D, ¥.D,
¥ D, ¥,D; ¥.D, P.D,
¥, D, ¥,D, ¥,D., ¥.D.)

Matrix 1

In Matrix 1, ¥; (i = 1-4) symbolizes the four signal states potentially detected by Do. The
four idler detectors are denoted by rows Dj (j = 1-4). So there are 16 combinations (4 x 4)
represented. Each matrix row represents all of the joint-detection rates involving a particular D;
idler detector. Each column distributes—to all D; idler detectors—the portion (calculated from

theory) that Wi would contribute to the total joint-detection rate measured at each Do position.



Applying the quantum-dice matrix to the experiment

In a fair toss of two four-sided dice, the 16 possible outcomes are entirely independent of
each other. But in the delayed-choice quantum eraser, the distribution of coincidence detections
is more complex. We must, therefore, modify our matrix to match the experimental conditions.

First, there are four impossible combinations in the experiment. Specifically, the
coincidence detections 1Dz and ¥>Di cannot occur because of the sorting property of the
Mach-Zehnder quantum eraser, whereby D registers only symmetric idler photons, and D>
registers only antisymmetric idler photons. Therefore, W2D1, W1D> coincidences must be zero.
¥3D4 joint detections also are impossible because D4 isn’t even looking at '3 wavefunctions
coming only from BBO region 2, so it can’t detect them (refer to Figure 1). The same goes for
W4Ds, since D3 isn’t looking at BBO region 1, either. It follows that these four coincidence

detections will always be zero in the matrix, like so:

(P.\D, 0 W¥;D, ¥,D
0 ¥.,D, ¥;D, ¥.D
¥, D;, ¥.D; ¥:D; O

\¥,D, ¥.D, 0 W¥.D.)

Matrix 2

The 16 combinations in Matrix 2 represent the possible random coincidence detections in
the experiment. /¢ is important to note here that while the interaction probability of the idler
photon at the four D; detectors is still completely random with one-in-four odds, the detection
rate of the entangled signal photons at detector Dy depends on the detector’s position and the
intensities of W: wavefunctions at that location. This alters the joint-detection rates of the signal-
idler pairs accordingly, because the signal detections at Dy are paired one-for-one with their
correlated random D idler detections. But any Dy detection made without a corresponding idler-

twin detection is ignored (zeroed), as shown in Matrix 2.
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Notice, also, that coincidence detections involving D (top matrix row) are not only

paired with ¥ signal-photon detections at Do, but with the W3 and ¥4 photons as well. A similar

effect can be seen in the other three rows of the matrix, too. Consequently, the data plots of

coincidence detections should include all of these data. And, in fact, this is exactly what we see

in the data plots presented in the original paper by Kim et al. (see Figures. 2 & 3). Their joint-

detection curves ride above a conspicuous floor instead of going to zero where theory predicts.

This key detail is neither explained nor acknowledged by the authors in the original paper. [2]
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Standard theory predicts that the intensity (i.e. probability) plots of interfering symmetric
and antisymmetric wavefunctions W1 and W> (red and green plots in Figure 4 above) should
periodically go to zero at specific locations in space. Clearly, this is not what we see in the
symmetric and antisymmetric joint-detection plots of Figures 2 and 3. The disparity results from
an accumulation of the other random joint detections shown in rows 1 and 2 of Matrix 2. These
include ¥3D1, W4D; in row 1 and W3D», W4D 2 in row 2; so, we should also include W3 and W4

probability waveforms in Figure 4, which I have done in Figure 5 (blue curves).

Sum of W3 & ¥4
—

Y3, BBO region 2 W4, BBO region 1

-0.24

Figure 5

Now we can use the four theoretical intensities plotted in Figure 5 to calculate how much
Y3 and W4 contribute to the measured joint-detection rates plotted in Figures 2 and 3. [Even
though the arbitrary axes of Figure 5 don’t match those of Figures 2 and 3, we can still use them.
Just multiply the y-axis values of Figure 5 by 100.]

In the Do scanning plot of Figure 2, we see that its central maximum lies at the position of
1.5 mm, while the first minimum occurs at approximately 1.8 mm. We know from the
corresponding red curve in Figure 5 that this minimum should be zero, but the lowest data point
in Figure 2 shows a value of just over 30 at this minimum, so this must be the data floor level.

The maximum, on the other hand, seems to be at about 125 or 130. Now, from the theoretical



plots of W3, and W4 in Figure 5 (blue curves), the joint detections at x = 0, which corresponds to
the Do position of 1.5 mm in Figure 2, should each contribute a rate of about 50 (0.5 x 100).

For the Do antisymmetric plot of Figure 3, the minimum occurs at the same position (1.5
mm) as the symmetric maximum does in Figure 2, as expected. Let’s see what we get when we
use numbers based on the theoretical plots of Figure 5 for the entries of Matrix 2.

With an assumed joint-detection floor level of 30, the measured maximum rate of 130 for
¥1D1 in Figure 2 must actually be 100 (130 - 30). We’ll use this number for the theoretical
maximum at the midpoint of 1.5 mm, which, again, corresponds to the y-axis (x = 0) in Figure 5.
At this Do position, the Figure-5 rates for ¥1D1, ¥2D1, ¥3D; and W4D; in row 1 of Matrix 2
would be 100, 0, 50, 50. The second-row antisymmetric values of ¥1D2, ¥2D2, ¥3D2, and W4D>
would be 0, 0, 50, 50. Row 3 is 100, 0, 50, 0, and row 4 is 100, 0, 0, 50. (See Matrix 3.)
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Matrix 3

The diagonal of Matrix 3 (red boxes), where the column and row indexes are equal (i =)),
represents the joint-detection rates of each signal wavefunction W; with its matching idler
detection (W1D1, ¥2D2, W3D3, W4D4). The off-diagonal entries represent the contributions from all
of the other possible joint detections. Each row denotes all of the joint-detection rates involving a
single idler detector—for example D in the first row. 7o find the combined joint-detection rates
of Vi wavefunctions that involve a single idler detector, we add the average value of the off-
diagonal elements in that matrix row to the diagonal element of that same row. In this way we
account for the random “background” joint detections at the idler detector of interest. Also, bear
in mind that each new Do position generates a whole new matrix of joint-detection rates.

The joint-detection rate of the symmetric state in Figure 2 is represented by the D1 row of

Matrix 3 (row 1). This consists of ¥1D1 plus the average contributions from the three off-



diagonal joint detections (Y2D1, ¥3D1 and W4D1). Thus we have 100 + (0 +50 + 50)/3 = 133.33,
which is pretty close to the measured coincidence rate of approximately 130 given in Figure 2 at
a Do position of x = 1.5 mm. So the estimated data floor of 30 does seem to yield some
agreement with experiment when calculating the theoretical values for Matrix 3 from Figure 5.

Row 2 of Matrix 3 gives us the antisymmetric D> coincidence data for Do at x = 1.5 mm.
This is 0 + (0 + 50 + 50)/3 = 33.33, which is not too far off from the value of 40 given in Figure
3 at x = 1.5 mm. However, it is virtually equal to the other antisymmetric minimum plotted
around x = 0.75 mm in Figure 3. Unlike the theoretical values of Figure 5, the actual
experimental data plotted in Figures 2 and 3 are a little asymmetric and skewed.

The original paper includes a plot of Do-D3 joint-detections, too, but for some reason it
does not yield as close a match with the detection rates predicted by Matrix 3. According to the
matrix, joint-detection rates involving D3 (or D4) at a Do position of 1.5 mm should be 50 + (100
+ 0 + 0)/3 = 83.33. But the original paper lists a joint-detection rate of about 118 for Do-Ds at this
position. I cannot explain this discrepancy without knowing more about how this data was
obtained and plotted, but the theoretical detection probability for W3 (and W4) at this midway
position is half that of 1, for example. Therefore, the detection rate of V'3 signal photons at Do
also should be half for a detector of a given quantum efficiency. And this same rate difference
must necessarily apply to the correlated idler twins arriving at D; detectors 8 ns later. The Do-D3
coincidence plot in the original paper should therefore reflect this detection-rate difference.

I have applied the same quantum-dice matrix strategy to the data of Figures 2 and 3 at Do
positions other than the midpoint of 1.5 mm, and the results all come close to the experimental
values. They even duplicate the decreasing floor level as Do moves away from 1.5 mm, an effect

that can readily be seen in the figures. The data floor is not flat. It bows upward in the middle.

Review and conclusions

This interpretation of the delayed-choice quantum eraser experiment began by applying
the analogy of tossing two four-sided dice. But this simple metaphor of a game of chance had to
be altered to fit the quantum conditions of the experiment. In particular, the four-sided die

representing the quantum probabilities at detector Do does not yield the uniform distributions that
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a fair four-sided die would. Instead, it’s a dynamically “loaded” quantum die with probabilities
that vary according to each of the four possible wavefunctions and the die’s location in space.
Rather than one number in four appearing after each toss, the number that appears depends on
where the die is tossed and which of the four potential wavefunctions it could land on. It’s as if
the odds of a craps game played in Las Vegas were completely different from the same game
played in Atlantic City.

The second four-sided idler die has some unique properties, too. Four of the 16 possible
combinations of our four-sided dice metaphor had to go to zero because of the physical
constraints imposed on the idler side of the experiment—specifically because of the sorting done
by the quantum eraser at D1 and D», and because of the selective behavior of the D3 and D4
detectors. Therefore, one side of our idler die will always show a zero, but which side (D1, Do,
D3, or D4) depends on which row of Matrix 2 we are using.

Finally, each die is quantumly entangled with the other, but just like in a normal game of
unentangled dice, the results aren’t known until the last die has come to rest—regardless of the
order in which that happens. The result is a very strange game of chance with two quantumly
entangled dice, which is what makes this interpretation so interesting. For one, it puts to rest the
counterintuitive “retrocausal” interpretations of this experiment once and for all. And for another,
it implies that the experiment—and indeed the world—could very well be just another crapshoot.

Sorry, Albert.




