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Abstract 

This paper offers an alternative interpretation of the delayed-choice quantum eraser using 

the analogy of tossing two quantumly entangled dice. This interpretation duplicates the 

symmetric and antisymmetric data plots of the original paper by Kim et al. and provides a deeper 

insight into the statistical nature of the experiment. In particular, it proposes a stochastic 

explanation for why the original coincidence-detection plots do not go to zero where theory 

predicts they should be zero. In so doing, it also presents a simple metaphor of the experiment as 

a collection of random dice throws. 
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Introduction 

It was Albert Einstein himself who famously signaled his skepticism of quantum 

mechanics with the quote “God does not play dice with the world.” With this one declaration he 

tossed aside the uncomfortable indeterminacy of the quantum world for the more familiar 

determinism of classical physics. Einstein never did make peace with quantum mechanics, and 

he repeated his dice metaphor throughout his life. But the quantum description of physical reality 

prevailed, and it now forms our most complete and accurate understanding of the universe. 

To be clear, quantum mechanics is not for the faint-of-heart. It’s a theory that flies in the 

face of our classical intuitions. But there are two experiments in particular that convincingly 

demonstrate two of the most bizarre yet fundamental effects of quantum behavior: superposition 

and entanglement. The two experiments are Young’s renowned double-slit experiment 

(superposition) and the now famous delayed-choice quantum eraser (superposition and 

entanglement), which is a 21st-Century update of Young’s experiment.  

This paper examines the delayed-choice quantum eraser experiment of Kim et al. by 

equating it with the random throws of two dice. The metaphor not only seems to explain the data 

plots of the experiment, but this interpretation also offers a deeper understanding of its random, 

stochastic nature. 

The experimental setup of Kim et al. 

I already have given a fuller description of the physics behind the delayed-choice 

quantum eraser, which I published in March 2025 on my website. [1] Figure 1 of that paper (and 

this one) shows the basic experimental setup (see Figure 1).  

At the bottom of Figure 1, UV light (351.1-nm) from an argon-ion laser (blue arrows) 

irradiates a double-slit, just like in Young’s classic experiment. However, the similarity to 

Young’s experiment quickly disappears next, because the wavefunction of each coherent UV 

photon that passes through the two slits is promptly used to pump two regions of a β-Barium 

Borate (BBO) crystal (labeled 1 and 2 in the figure). 

https://tvhiggins.com/wp-content/uploads/2025/04/Disentangling-the-Delayed-Choice-Quantum-Eraser.pdf
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 	 A tiny minority of  pump photons (1 

in 106) are transformed within the crystal 

into two entangled photons (signal γ and 

idler φ), each having twice the wavelength 

(702.2 nm) and therefore half the 

frequency or energy.  

 Signal photons (γ) emitted from the two 

BBO regions are directed off to the left in 

Figure 1 where they encounter a lens that 

focuses them onto the scanning detector 

D0. This detector looks for any intensity 

variations that might appear along the 

focal plane where the two beams intersect. 

	 Idler photons (φ) exit the BBO to a 

separate area of the setup in Figure 1, 

where they encounter a prism, three 

beamsplitters (BSA, BSB, BS), two 

mirrors, and four detectors (D1, D2, D3, 

D4). Optical path lengths from the BBO to 

these four detectors Dj (j = 1-4) are all 

made equal, but they also are intentionally 

made longer than the optical path length 

from the BBO to D0. Τhis creates a time delay between the detections of each idler photon and its 

entangled signal-photon twin. In the original experiment, this delay amounts to “at least 8 ns.” 

	 Each of the Dj detectors is also electronically linked with D0 for coincidence detection 

(see Figure 1 again). Since each signal-idler pair is created simultaneously, coincidence 

detections will generate a ledger containing four subsets of synchronized event data. Each 

detection event at D0 will therefore have a corresponding detection of its entangled twin 8 ns 

later at one of the four Dj detectors. 

Figure 1
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The quantum-dice matrix 

Here’s how we might describe this experiment as the dice rolls of two four-sided dice: 

Each signal photon (γ) randomly encountered by the scanning detector D0 potentially belongs to 

one of four states in a statistical ensemble of mixed quantum states. The four states are: BBO 

regions 1 and 2 acting together symmetrically (Ψ1); BBO regions 1 and 2 acting together 

antisymmetrically (Ψ2); BBO region 2 acting alone (Ψ3); and BBO region 1 acting alone (Ψ4). 

But, only the joint detections of signal detector D0 and idler detector Dj (j = 1-4) can decide 

which state the photon belongs to (Ψ1, Ψ2, Ψ3, or Ψ4). Meanwhile, each entangled idler twin (φ) 

is randomly intercepted by either D1, D2, D3, or D4. (There are important exceptions to this 

random detector distribution that will be introduced soon.) 

The random detections at D0 might therefore be modeled as the random outcomes of a 

four-sided die. The random detections 8 ns later of each entangled idler twin at Dj could be 

thought of as the arbitrary outcomes of another four-sided die. Coincidence detections record the 

combinations of these correlated detections of the signal-idler pairs. 

As such, the delayed-choice quantum eraser seems like a possible candidate for applying 

the statistical mathematics of tossing two four-sided dice. We start by building a matrix of all 

possible combinations of coincidence detections, which would look like this: 

In Matrix 1, Ψi (i = 1-4) symbolizes the four signal states potentially detected by D0. The 

four idler detectors are denoted by rows Dj (j = 1-4). So there are 16 combinations (4 x 4) 

represented. Each matrix row represents all of the joint-detection rates involving a particular Dj 

idler detector. Each column distributes—to all Dj idler detectors—the portion (calculated from 

theory) that Ψi would contribute to the total joint-detection rate measured at each D0 position. 

Matrix 1
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Applying the quantum-dice matrix to the experiment 

In a fair toss of two four-sided dice, the 16 possible outcomes are entirely independent of 

each other. But in the delayed-choice quantum eraser, the distribution of coincidence detections 

is more complex. We must, therefore, modify our matrix to match the experimental conditions. 

First, there are four impossible combinations in the experiment. Specifically, the 

coincidence detections Ψ1D2 and  Ψ2D1 cannot occur because of the sorting property of the 

Mach-Zehnder quantum eraser, whereby D1 registers only symmetric idler photons, and D2 

registers only antisymmetric idler photons. Therefore, Ψ2D1, Ψ1D2 coincidences must be zero. 

Ψ3D4 joint detections also are impossible because D4 isn’t even looking at Ψ3 wavefunctions 

coming only from BBO region 2, so it can’t detect them (refer to Figure 1). The same goes for  

Ψ4D3, since D3 isn’t looking at BBO region 1, either. It follows that these four coincidence 

detections will always be zero in the matrix, like so: 

The 16 combinations in Matrix 2 represent the possible random coincidence detections in 

the experiment. It is important to note here that while the interaction probability of the idler 

photon at the four Dj detectors is still completely random with one-in-four odds, the detection 

rate of the entangled signal photons at detector D0 depends on the detector’s position and the 

intensities of Ψi wavefunctions at that location. This alters the joint-detection rates of the signal-

idler pairs accordingly, because the signal detections at D0 are paired one-for-one with their 

correlated random Dj idler detections. But any D0 detection made without a corresponding idler-

twin detection is ignored (zeroed), as shown in Matrix 2. 

Matrix 2
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Notice, also, that coincidence detections involving D1 (top matrix row) are not only 

paired with Ψ1 signal-photon detections at D0, but with the Ψ3 and Ψ4 photons as well. A similar 

effect can be seen in the other three rows of the matrix, too. Consequently, the data plots of 

coincidence detections should include all of these data. And, in fact, this is exactly what we see 

in the data plots presented in the original paper by Kim et al. (see Figures. 2 & 3).  Their joint-

detection curves ride above a conspicuous floor instead of going to zero where theory predicts. 

This key detail is neither explained nor acknowledged by the authors in the original paper. [2] 

Figure 2 (from [2]) Figure 3 (from [2])

Figure 4

https://www.semanticscholar.org/reader/a0b647f8140d72aa2c014ddec19e8b093d2b30f1
https://www.semanticscholar.org/reader/a0b647f8140d72aa2c014ddec19e8b093d2b30f1
https://www.semanticscholar.org/reader/a0b647f8140d72aa2c014ddec19e8b093d2b30f1
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Standard theory predicts that the intensity (i.e. probability) plots of interfering symmetric 

and antisymmetric wavefunctions Ψ1 and Ψ2 (red and green plots in Figure 4 above) should 

periodically go to zero at specific locations in space. Clearly, this is not what we see in the 

symmetric and antisymmetric joint-detection plots of Figures 2 and 3. The disparity results from 

an accumulation of the other random joint detections shown in rows 1 and 2 of Matrix 2. These 

include Ψ3D1, Ψ4D1 in row 1 and Ψ3D2, Ψ4D 2 in row 2; so, we should also include Ψ3 and Ψ4 

probability waveforms in Figure 4, which I have done in Figure 5 (blue curves). 

Now we can use the four theoretical intensities plotted in Figure 5 to calculate how much 

Ψ3 and Ψ4 contribute to the measured joint-detection rates plotted in Figures 2 and 3. [Even 

though the arbitrary axes of Figure 5 don’t match those of Figures 2 and 3, we can still use them. 

Just multiply the y-axis values of Figure 5 by 100.] 

In the D0 scanning plot of Figure 2, we see that its central maximum lies at the position of 

1.5 mm, while the first minimum occurs at approximately 1.8 mm. We know from the 

corresponding red curve in Figure 5 that this minimum should be zero, but the lowest data point 

in Figure 2 shows a value of just over 30 at this minimum, so this must be the data floor level. 

The maximum, on the other hand, seems to be at about 125 or 130. Now, from the theoretical 

Figure 5
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plots of Ψ3, and Ψ4 in Figure 5 (blue curves), the joint detections at x = 0, which corresponds to 

the D0 position of 1.5 mm in Figure 2, should each contribute a rate of about 50 (0.5 x 100). 

For the D0 antisymmetric plot of Figure 3, the minimum occurs at the same position (1.5 

mm) as the symmetric maximum does in Figure 2, as expected. Let’s see what we get when we 

use numbers based on the theoretical plots of Figure 5 for the entries of Matrix 2.  

With an assumed joint-detection floor level of 30, the measured maximum rate of 130 for 

Ψ1D1 in Figure 2 must actually be 100 (130 - 30). We’ll use this number for the theoretical 

maximum at the midpoint of 1.5 mm, which, again, corresponds to the y-axis (x = 0) in Figure 5. 

At this D0 position, the Figure-5 rates for Ψ1D1, Ψ2D1, Ψ3D1 and Ψ4D1 in row 1 of Matrix 2 

would be 100, 0, 50, 50. The second-row antisymmetric values of Ψ1D2, Ψ2D2, Ψ3D2, and Ψ4D2 

would be 0, 0, 50, 50. Row 3 is 100, 0, 50, 0, and row 4 is 100, 0, 0, 50. (See Matrix 3.) 

The diagonal of Matrix 3 (red boxes), where the column and row indexes are equal (i = j), 

represents the joint-detection rates of each signal wavefunction Ψi with its matching idler 

detection (Ψ1D1, Ψ2D2, Ψ3D3, Ψ4D4). The off-diagonal entries represent the contributions from all 

of the other possible joint detections. Each row denotes all of the joint-detection rates involving a 

single idler detector—for example D1 in the first row. To find the combined joint-detection rates 

of Ψi wavefunctions that involve a single idler detector, we add the average value of the off-

diagonal elements in that matrix row to the diagonal element of that same row. In this way we 

account for the random “background” joint detections at the idler detector of interest. Also, bear 

in mind that each new D0 position generates a whole new matrix of joint-detection rates. 

The joint-detection rate of the symmetric state in Figure 2 is represented by the D1 row of 

Matrix 3 (row 1). This consists of Ψ1D1 plus the average contributions from the three off-

Matrix 3
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diagonal joint detections (Ψ2D1, Ψ3D1 and Ψ4D1). Thus we have 100 + (0 +50 + 50)/3 = 133.33, 

which is pretty close to the measured coincidence rate of approximately 130 given in Figure 2 at 

a D0 position of x = 1.5 mm. So the estimated data floor of 30 does seem to yield some 

agreement with experiment when calculating the theoretical values for Matrix 3 from Figure 5. 

Row 2 of Matrix 3 gives us the antisymmetric D2 coincidence data for D0 at x = 1.5 mm. 

This is 0 + (0 + 50 + 50)/3 = 33.33, which is not too far off from the value of 40 given in Figure 

3 at x = 1.5 mm. However, it is virtually equal to the other antisymmetric minimum plotted 

around x = 0.75 mm in Figure 3. Unlike the theoretical values of Figure 5, the actual 

experimental data plotted in Figures 2 and 3 are a little asymmetric and skewed. 

The original paper includes a plot of D0-D3 joint-detections, too, but for some reason it 

does not yield as close a match with the detection rates predicted by Matrix 3. According to the 

matrix, joint-detection rates involving D3 (or D4) at a D0  position of 1.5 mm should be 50 + (100 

+ 0 + 0)/3 = 83.33. But the original paper lists a joint-detection rate of about 118 for D0-D3 at this 

position. I cannot explain this discrepancy without knowing more about how this data was 

obtained and plotted, but the theoretical detection probability for Ψ3 (and Ψ4) at this midway 

position is half that of Ψ1, for example. Therefore, the detection rate of Ψ3 signal photons at D0 

also should be half for a detector of a given quantum efficiency. And this same rate difference 

must necessarily apply to the correlated idler twins arriving at Dj detectors 8 ns later. The D0-D3 

coincidence plot in the original paper should therefore reflect this detection-rate difference. 

I have applied the same quantum-dice matrix strategy to the data of Figures 2 and 3 at D0 

positions other than the midpoint of 1.5 mm, and the results all come close to the experimental 

values. They even duplicate the decreasing floor level as D0 moves away from 1.5 mm, an effect 

that can readily be seen in the figures. The data floor is not flat. It bows upward in the middle. 

Review and conclusions 

This interpretation of the delayed-choice quantum eraser experiment began by applying 

the analogy of tossing two four-sided dice. But this simple metaphor of a game of chance had to 

be altered to fit the quantum conditions of the experiment. In particular, the four-sided die 

representing the quantum probabilities at detector D0 does not yield the uniform distributions that 
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a fair four-sided die would. Instead, it’s a dynamically “loaded” quantum die with probabilities 

that vary according to each of the four possible wavefunctions and the die’s location in space. 

Rather than one number in four appearing after each toss, the number that appears depends on 

where the die is tossed and which of the four potential wavefunctions it could land on. It’s as if 

the odds of a craps game played in Las Vegas were completely different from the same game 

played in Atlantic City. 

The second four-sided idler die has some unique properties, too. Four of the 16 possible 

combinations of our four-sided dice metaphor had to go to zero because of the physical 

constraints imposed on the idler side of the experiment—specifically because of the sorting done 

by the quantum eraser at D1 and D2, and because of the selective behavior of the D3 and D4 

detectors. Therefore, one side of our idler die will always show a zero, but which side (D1, D2, 

D3, or D4) depends on which row of Matrix 2 we are using.  

Finally, each die is quantumly entangled with the other, but just like in a normal game of 

unentangled dice, the results aren’t known until the last die has come to rest—regardless of the 

order in which that happens. The result is a very strange game of chance with two quantumly 

entangled dice, which is what makes this interpretation so interesting. For one, it puts to rest the 

counterintuitive “retrocausal” interpretations of this experiment once and for all. And for another, 

it implies that the experiment—and indeed the world—could very well be just another crapshoot. 

Sorry, Albert.


